Apple 11
" Reference
- Manual

: January 1978

o '
&
o
y ¥
!
o
w
A o) ‘
2 \ !'
- g *i.'.‘ |
I < ‘
‘ = S~
x - % <
W
"
|
[de “
NV
&
/ 1]
/ N R
Oy = -v'»»/‘z

B,
1 ' ' : l
o : flag _ B
) - - |] b o
" — 3] ‘
] . ‘ W
L | |
)
o L

} i
SURES ST
. o
.

T ‘vv:), ‘\~ 5 i —";"\“ E J_:
o - ,
s

L\\Reference Manual

SIGNAL DESCRIPTION FOR KEYBOARD INTERFACE

B1-B7: 7 bit ASCII data from keyboard, positive logic (high level=
"1"), TTL Togic levels expected.

GND: System circuit ground. @ Volt Tline from power supply.
NC: No connection.
RESET: System reset input. Requires switch closure to ground.

STROBE: Strobe output from keyboard. The APPLE II recognizes the
positive going edge of the incoming strobe.

bt) Positive 5-Volt supply. To avoid burning out the connector
pin, current drain MUST be Tess than TQQmA.

-12V: Negative 12-Volt supply. Keyboard should draw less than
50mA.

PERTPHERAL CONNECTORS

The eight Peripheral Connectors mounted near the back edge of the
APPLE II board provide a convenient means of connecting expansion
hardware and peripheral devices to the APPLE II I/0 Bus. These are
Winchester #2HW25C@-111 (or equivalent) 5@ pin card edge connectors
with pins on .1Q" centers. Location and pin outs are illustrated in
Figures 1 and 4.

SIGNAL DESCRIPTION FOR PERIPHERAL I1/0

AB-A15: 16 bit system address bus. Addresses are set up by the

6502 within 300nS after the beginning of @,. These lines
will drive up to a total of 16 standard TTL loads.

DEVICE SELECT: Sixteen addresses are set aside for each peripheral
connector. A read or write to such an address will
send pin 41 on the selected connector low during ﬂz
(5@@nS). Each will drive 4 standard TTL loads.

DB-D7: 8 bit system data bus. During a write cycle data is
set up by the 6502 less than 3P@nS after the beginning
of @,. During a read cycle the 6502 expects data to
be réady no less than 1PPnS before the end of ﬂz.
These Tines will drive up to a total of 8 total“low
power schottky TTL loads.

127

DMA:

DMA IN:

DMA OUT:

D
=
o

—
=
e 3

INT IN:

INT OUT:

Direct Memory Access control output. This Tine has a
3K Ohm pullup to +5V and should be driven with an
open collector output.

Direct Memory Access daisy chain input from higher
priority peripheral devices. Will present no more
than 4 standard TTL loads to the driving device.

Direct Memory Access daisy chain output to Tower
priority peripheral devices. This line will drive
4 standard TTL Toads.

System circuit ground. @ Volt Tine from power supply.

Inhibit Line. When a device pulls this line low, all
ROM's on board are disabled (Hex addressed DP@P through
FFFF). This line has a 3K Ohm pullup to +5V and

should be driven with an open collector output.

Interrupt daisy chain input from higher priority peri-
pheral devices. Will present no more than 4 standard
TTL Toads to the driving device.

Interrupt daisy chain output to lower priority peri-
pheral devices. This line will drive 4 standard TTL

Toads.

1/0 SELECT: 256 addresses are set aside for each peripheral connector

(see address map in "MEMORY" section). A read or write
of such an address will send pin 1 on the selected
connector Tow during 0, (50PnS). This Tine will drive
4 standard TTL loads.

I/0 STROBE: Pin 20 on all peripheral connectors will go Tow during

IRQ:

@, of a read or write to any address C8@@#-CFFF. This
1%ne will drive a total of 4 standard TTL loads.

Interrupt request line to the 65@02. This Tine has a
3K Ohm pullup to +5V and should be driven with an open
collector output. It is active low.

No connection.

Non Maskable Interrupt request line to the 6502. This
Tine has a 3K Ohm pullup to +5V and should be driven with
an open collector output. It is active low.

A 1MHz (nonsymmetrical) general purpose timing signal. Ui11
drive up to a total of 16 standard TTL loads.

"Reqdy” line to the 65@2. This line should change only
during @., and when Tow will halt the microprocessor at
the next 'READ cycle. This line has a 3K Ohm pullup to

+5V and should be driven with an open collector output.

Reget Tine from "RESET" key on keyboard. Active low. Will
drive 2 MOS loads per Peripheral Connector.

128

Figure 4

TOP VIEW

PINOUT (Back Edge of PC Board)

26
27
28

30
31
32

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

B

nanoonononannonnnnonononan

-
Uil

Uudouuduououuoioaoooouo

ol

+5V
DMA

PERIPHERAL CONNECTORS
(EIGHT OF EACH)

out

INT OUT

DMA
RDY

1/0 STROBE

N.C.
R/W
A15
A14
A13
A12
Al
A10

1/0 SELECT

(Toward Front Edge of PC Board)
LOCATIONS J2 TO J12

Figure 5

PINOUT

(BLUE/WHITE WIRE) —12V

(ORANGE WIRE) +5V

i
i

(BLACK WIRE) GND

W Ou

(O

On O PO

C

POWER CONNECTOR

TOP VIEW
(Toward Right Side of PC Board)

LOCATION K1

130

-5V (BLUE WIRE)
+12V (ORANGE/WHITE WIRE)

GND (BLACK WIRE)

HEX

ADDRESS ASSIGNED FUNCTION COMMENTS

C060/8 Cassette input State of ''Cassette Data In"
appears in bit 7.

input on

Cco61/9 "Swi" State of Switch 1 /\ Game
I1/0 connector appears in bit 7.

C062/A "Swa" State of Switch 2 input on
Game I/0O connector appears
in bit 7.

C063/B "SwW3" State of Switch 3 input on
Game I/O connector appears
in, bt 7

cos4/C Paddle O timer output State of timer output for
Paddle O appears in bit 7.

C065/D Y 1 o o State of timer output for
Paddle 1 appears in bit 7.

C066/E " 2 g ki State of timer output for
Paddle 2 appears in bit 7.

CO067/F i 3 U 1 State of timer output for
Paddle 3 appears in bit 7.

Co7X "PDL STB" Triggers paddle timers
during ¢2.

C08X DEVICE SELECT O Pin 41 on the selected
Peripheral Connector goes

C09X " 1 low during ¢2.

COAX o 2

COBX i 3

COoCX 1" 4

CODX g 5

COEX & 6

COFX it 7

C10X (A 8 Expansion connectors,

C11Xx " 9 Y

C12X & A o

138

HEX

ADDRESS ASSIGNED FUNCTION COMMENTS
C13X DEVICE SELECT B A
C14X i C 2
C15X " D "
C1leX i E &
C17X (! F i
C1XxXX I/0 SELECT 1 Pin 1 on the selected
Peripheral Connector goes
C2XX i 2 low during ¢2.
C3XX L 3 NOTES:
1. Peripheral Connector
C4XxXX 4 4 0 does not get this
signal.
€oRx : ? 2. T/O SELECT 1 uses the
s €
C7XX " 7
C8XX i 8, I/O STROBE | Expansion connectors.
C9xXX g 9, "
CAXX " A, Ly
CBXX i B, .
CCXX s C, u
CDXX Y D, W
CEXX & E, "
CFXX Al F, "
DOOO-D7FF | ROM socket DO Spare.
D800O-DFFF L 4 D8 Spare.
EOOO-E7FF i 4 EO BASIC.
E800-EFFF " L E8 BASIC.
FOOO-F7FF i " FO 1K of BASIC, 1K of utility.
F800-FFFF " i F8 Monitor.

139

Reference Manual

For /le Only

Apple Il

|

T T T LT LT T LT

D I o

g]

I

I N VI VI VI

Chapter 6

Programming for
Peripheral Cards

The seven expansion slots on the Apple lle’s main circuit board
are used for installing circuit cards containing the hardware and
firmware needed to interface peripheral devices to the Apple lle.
These slots are not simple /O ports; peripheral cards can
access the Apple lle’s data, address, and control lines via these
slots. The expansion slots are numbered from 1 to 7, and certain
signals, described below, are used to select a specific slot.

The older Apple Il and Apple Il Plus models have an eighth
expansion slot: slot number 0. On those models, slot 0 is normally
used for a language card or a ROM card; the functions of the
Apple Il Language Card are built into the main circuit board of the
Apple lle.

Peripheral-card Memory Spaces

Because the Apple lle’s 6502 microprocessor does all of its 1/O
through memory locations, portions of the Apple lle’s memory
space have been allocated for the exclusive use of the cards in
the expansion slots. In addition to the memory locations used for
actual /O, there are memory spaces available for programmable
memory (RAM) in the main memory and for read-only memory
(ROM or PROM) on the peripheral cards themselves.

The memory spaces allocated for the peripheral cards are
described below. Those memory spaces are used for small
dedicated programs such as I/O drivers. Peripheral cards that
contain their own driver routines in firmware like this are called
intelligent peripherals. They make it possible for you to add
peripheral hardware to your Apple lle without having to change
your programs, provided that your programs follow normal
practice for data input and output.

Peripheral-card Memory Spaces 121

Table 6-1 Peripheral-card I/0
Memory Locations

Note: The enabling signal is marked
with a prime, to indicate that it is an
active-low signal.

122

Peripheral-card 1/0 Space

Each expansion slot has the exclusive use of sixteen memory
locations for data input and output in the memory space
beginning at location $C090. Slot 1 uses locations $C090 through
$CO9F, slot 2 uses locations $C0A0 through $COAF, and so on
through location $COFF, as shown in Table 6-1.

These memory locations are used for different I/O functions,
depending on the design of each peripheral card. Whenever the
Apple lle addresses one of the sixteen I/O locations allocated to
a particular slot, the signal on pin 41 of that slot, called DEVICE
SELECT“, switches to the active (low) state. This signal can be
used to enable logic on the peripheral card that uses the four
low-order address lines to determine which of its sixteen 1/O
locations is being accessed.

Slot Locations Enabled by

1 $C090-$CO09F DEVICE SELECT'
2 $COAD-$COAF DEVICE SELECT’
3 $C0BO-$COBF DEVICE SELECT'
4 $CO0CO0-$COCF DEVICE SELECT’
5 $CODO0-$CODF DEVICE SELECT’
6 $COEOQ-$COEF DEVICE SELECT’
7 $COF0-SCOFF DEVICE SELECT’

Peripheral-card ROM Space

One 256-byte page of memory space is allocated to each
peripheral card. This space is normally used for read-only
memory (ROM or PROM) on the card with driver programs that
control the operation of the peripheral device connected to the
card.

The page of memory allocated to each expansion slot begins at

location $Cn00, where n is the slot number, as shown in Table 6-2
and Figure 6-3. Whenever the Apple lle addresses one of the

Programming for Peripheral Cards

i
n
n
#
n
B
B
»
r
R
n
F
N
E
a
a

Table 6-2 Peripheral-card ROM
Memory Locations

Note: The enabling signal is marked
with a prime, to indicate that it is an

active-low signal.

256 ROM memory locations allocated to a particular slot, the
signal on pin 1 of that slot, called 1/0 SELECT“, switches to the
active (low) state. This signal enables the ROM or PROM
devices on the card, and the eight low-order address lines
determine which of the 256 memory locations is being accessed.

Locations Enabled by

$C100-$C1FF 1/0 SELECT'
$C200-$C2FF 1/0 SELECT’
$C300-$C3FF 1/0 SELECT’
$C400-$C4FF 1/0 SELECT’
$CS00-$CSFF I1/0 SELECT'
$C600-$C6FF 1/0 SELECT’
$C700-$C7FF 1/0 SELECT’

If there is an 80-column text card installed in the auxiliary slot, some
of the functions normally associated with slot 3 are performed by

the 80-column text card and the built-in 80-column firmware. With a
80-column text card installed, the 1/0 SELECT* signal is not available
for slot 3, so firmware in ROM on a card in slot 3 will not run.

Expansion ROM Space

In addition to the small areas of ROM memory allocated to each
expansion slot, peripheral cards can use the 2K-byte memory
space from $C800 to $CFFF for larger programs in ROM or PROM.
This memory space is called expansion ROM space (see the
memory map in Figure 6-3). Besides being larger, the expansion
ROM memory space is always at the same locations regardless
of which slot is occupied by the card, making programs that
occupy this memory space easier to write. (See the section “I/O
Programming Suggestions”, below.)

This memory space is available to any peripheral card that needs
it. More than one peripheral card can have expansion ROM on it,
but only one of them can be active at a time.

Peripheral-card Memory Spaces 123

Each peripheral card that uses expansion ROM must have a
circuit on it to enable the ROM. The circuit does this by a two-
stage process: first, it sets a flip-flop when the 1/0 SELECT” signal,
pin 1 on the slot, becomes active (low); second, it enables the
expansion ROM devices when the 1/0 STROBE” signal, pin 20 on
the slot, becomes active (low). Figure 6-1 shows a typical ROM-
enable circuit.

The 1/0 SELECT” signal on a particular slot becomes active
whenever the Apple lle’'s 6502 microprocessor addresses a
location in the 256-byte ROM address space allocated to that

slot. The 170 STROBE” signal on all of the expansion slots becomes
active (low) when the 6502 addresses a location in the
expansion-ROM memory space, $C800-$CFFF. The 1/0 STROBE”
signal is used to enable the expansion-ROM devices on a
peripheral card (see Figure 6-1).

If there is an 80-column text card installed in the auxiliary slot, some
of the functions normally associated with slot 3 are performed by

the text card and the built-in 80-column firmware. With the text card
installed, the 1/0 STROBE “ signal is not available on slot 3, so firmware
in expansion ROM on a card in slot 3 will not run.

Figure 6-1 Expansion ROM Enable

i it
Clrcul /0 SELECT' S ENABLE 1
LATCH >

$CFFF’ R
ENABLE 2 | 2K BYTE
(170 STROBE' }— —»| ROM
AO TO A10
(ADDRESS }— >

A program on a peripheral card can get exclusive use of the

i s EADLT expansion ROM memory space by referring to location $CFFF in

efFFF = its initialization phase. This location is special: all peripheral cards
that use expansion ROM must recognize a reference to $CFFF as
a signal to reset their ROM-enable flip-flops and disable their
expansion ROMs. Of course, doing so also disables the
expansion ROM on the card that is about to use it, but the next
instruction in the initialization code sets the flip-flop on the
expansion-ROM enable circuit on the card. Once this has been
done, this card has exclusive use of the expansion memory
space and its program can jump directly into the expansion
ROM.

N
nN)

\V

As described above, the expansion-ROM disable circuit resets
the enable flip-flop whenever the 6502 addresses location $CFFF.

124 Programming for Peripheral Cards

5
B
»
»
»
»
B
n
n
K
T
»
i

Figure 6-2 ROM Disable Address
Decoding

Table 6-3 Peripheral-card RAM
Memory Locations

*Note: The RAM locations normally
allocated to slot 3 are taken over by
any card installed in the auxiliary slot.

i 2= I } To RESET, ROM enable
flip-f
(ato0 — L

1/0 STROBE' >

To do this, the peripheral card must detect the presence of $CFFF

on the address bus. You can use the 1/0 STROBE‘ signal for part

of the address decoding, since it is active for addresses from

$C800 through $CFFF. If you can afford to sacrifice some ROM

space, your can simplify the address decoding even further and

save circuitry on the card. For example, if you give up the last N
256 bytes of expansion ROM space, your disable circuit only

needs to detect addresses of the form $CFxx, and you can use

the minimal disable-decoding circuitry shown in Figure 6-2.

Peripheral-card RAM Space

There are 56 bytes of main memory allocated to the peripheral
cards, eight bytes per card, as shown in Table 6-3. These 56
locations are actually in the RAM memory reserved for the text
and low-resolution graphics displays, but these particular
locations are not displayed on the screen and their contents are
not changed by the built-in output routine COUT1. Programs in
ROM on peripheral cards use these locations for temporary data
storage.

Base Slot Number

Address 1 2 3* 4 5 6 7
$0478 $0479 $047A $047B* $047C $047D $047E $047F
$04F8 $04F9 $04FA $04FB* $04FC S$04FD $O04FE SO4FF
$0578 $0579 $057A $057B* $057C $0S57D $0S7E $057F
$05F8 $05F9 $0SFA $O0SFB* $0SFC $0S5FD $O0SFE $OSFF
$0678 $0679 $067A $067B* $067C $067D $0G7E $067F
$06F8 $06F9 $06FA $06FB* $06FC $06FD $O0GFE $O0GFF
$0778 $0779 $077A $077B* $077C $077D $077E $077F
$07F8 $07F9 $07FA $07FB* $07FC $O07FD S$O07FE S$O7FF

Peripheral-card Memory Spaces 125

I /O Programming Suggestions

A program on a peripheral card can use the eight base
addresses shown in the table to access the eight RAM locations
allocated for its use, as shown in the next section, “I/O
Programming Suggestions”.

A program in ROM on a peripheral card should work no matter
which slot the card occupies. If the program includes a jump to
an absolute location in one of the 256-byte memory spaces, then
the card will only work when it is plugged into the slot that uses
that memory space. If you are writing the program for a
peripheral card that will be used by many people, you should
avoid placing such a restriction on the use of the card. ’

To function properly no matter which slot a peripheral card is
installed in, the program in the card’s 256-byte memory space must
not make any absolute references to itself. Instead of using jump
instructions, you should force conditions on branch instructions,
which use relative addressing.

The first thing a peripheral-card subroutine should do is to save
the contents of the 6502’s registers. One way to do this is to use
the monitor subroutine 10SAVE. This subroutine, which starts at
location $FF4A, stores the registers in zero-page memory locations
$45-$49. A companion subroutine, IOREST, restores the registers
from these memory locations. Your program should call IOREST,
which starts at location $FF3F, just before it returns control to the
program that called it.

This method of saving the registers is convenient, but it is not
always safe. If a second subroutine calls I0SAVE, or if an interrupt
occurs, the new register contents get saved in the same

locations, and the old ones get destroyed. It is safer, though
somewhat slower, to save the registers on the stack, and restore
them just before returning control to the calling program.

Most single-character 1/O is done via the 6502's accumulator. A
character being output through your subroutine will be in the
accumulator with its high bit set when your subroutine is called.
Likewise, if your subroutine is performing character input, it must
leave the character in the accumulator with its high bit set when
it returns to the calling program.

126 Programming for Peripheral Cards

A Warning

Be careful where you execute CLEAR. Since CLEAR resets Apple-

subroutines, control stack: see soft's internal control stack, using it in the midst of a subroutine orin a
Section 3.4 FOR/NEXT loop can interfere with the orderly flow of program execu-

tion. The following program, for example, will fail in line 30 witha NEX T
FOR/NEXT loops: see Section 3.3 WITHOUT FOR error:

10 FOR X = 1 TO 10 —try to loop 10 times

20 PRINT X

30 CLEAR —CLEAR resets control stack

(among other things) -

40 NEXT X —program fails here—doesn’t
know it's in a loop

20 PRINT "HI!" —program won't get this far

123 ThelLIST Command

LIST

LIST 100

LIST 100,

LIST - Z00
LIST 200

LIST 100, 200
LIST 100 - Z00

L IST displays or prints a program The L 15T command displays on the screen all or part of the pro-
gram currently in memory, or writes it to the current output device as
PR # statement: see Section 5.2.1 specified in the last PR # statement. (For example, if there is a printer

connected to slot 1, and if the statement PR# 1 has been executed,
then the program listing is sent to the printer.)

Listing the entire program To list the entire program, just type the keyword L IS T and press
:
LIST
Listing a portion of the program You can list a portion of the program by specifying the first and last

lines you want to list, separated by either a comma or a dash:

LIST 100, 250 —display lines 1 00 through
230
LIST 100 - 250 —also display lines 100

through 250

10 General Information

il

x.
;

b i -

o

|

Reference Manual-volumel

For /e Only

b T THT I T T T

]

B o o O)

output: the transfer of information from
the computer to an external destination

PR # statement: see Section 5.2.1

PR INT statement: see Section 5.2.2

number formats: see Section 5.2.3

screen formatting: see Section 5.2.4

miscellaneous output: see Section
525

5.2.1

P R # specifies destination for subse-
quent output

expansion slot: see Apple lle Owner’s
Manual and Apple lle Reference Manual

Slot number O specifies output to the
screen

Output

This section describes the output facilities available in Applesoft:

e Section 5.2.1 covers the PR # statement, which controls the des-
tination to which output is directed.

e Section 5.2.2 contains a detailed discussion ofthe PRINT
statement, Applesoft’s primary output statement.

e Section 5.2.3 gives details on the way numbers are formatted
when written withthe PR INT statement.

e Section 5.2.4 describes Applesoft's wide variety of facilities for
controlling the format in which textual information is displayed on
the screen.

e Section 5.2.5 touches briefly on various miscellaneous output fa-
cilities not covered elsewhere: the Apple lle’s built-in speaker,
annunciator outputs, utility strobe, and cassette tape output.

The PR # Statement

PR# 1
PR# X
PR# SLOT - J

The PR # statement specifies the destination to which the computer
will send subsequent output. The expression following the keyword
PR # should evaluate to a number between 0 and 7, designating the
expansion slot to which output is to be sent.

When Applesoft is started up, it is set to send output to the display
screen. Executing a PR # statement with a slot number from 1 to 7
instructs Applesoft to send output instead to the peripheral output de-
vice (such as a printer, terminal, or modem) connected to the desig-
nated slot. A slot number of O reestablishes the display screen as the
current output device. For example, the following program fragment
writes a string of characters to the device connected to slot 1, then re-
establishes screen output:

610 PR# 1 —send output to device in slot 1

BZ20 PRINT Z% —write contents of string vari-
able Z% to device inslot 1

B30 PR# O —send future output to screen

Notice that the character # is part of the keyword PR # and cannot
be omitted.

Output 111

IN# statement: see Section 5.1.1 Restarting the System with PR#: I the slot designated in an I N# or
PR # statement contains a disk controller card, Applesoft will attempt to

Be careful! restart (often called “booting”) the system from the disk contained in
drive 1 connected to that slot. When you do this on purpose, it's the
usual way of restarting the system from within Applesoft; when you do it
by mistake, it can be a catastrophe.

A Warning

If no output device is connected to the slot designated in a PR # state-
CONTROL |-| RESET |: see Section 1.3.2 ment, the system will hang. To recover, use [CONTROL |- [RESET] .

A slot number between 8 and 255 will cause unpredictable and possi-
bly aberrant behavior.

A Warning

If you are using the Apple Ile 80-Column Text Card, always be sure to
deactivate it by typing [Esc | [conTroL |-@ before using PR # to transfer
output to another slot. Leaving the Text Card active while using a printer
or while restarting the system from a disk may produce amusing but
confusing fireworks on the screen.

Although the Text Card is installed in the Apple lle’s special auxiliary
slot, it appears to the computer as if it were in slot 3. So to reactivate the
Text Card after sending output to another device, type

PR# 3

You can also return output to the 40-column screen with the Text Card
inactive by typing

PR# O

However, don'tuse PR# 0 to redirect output directly from the Text
Card to the 40-column screen without first deactivating the Text Card
with -Q. Under certain circumstances, this may cause
textintended for the screen to be written outside the area of memory
reserved for it, possibly destroying your Applesoft program or other
important information.

A slot number less than O or greater than 255 will stop the program
with the message

TILLEGAL QUANTITY ERROR

112 Input/Output

228

POS

Syntax: POS (expr)
Example: POS (0)

Yields the current horizontal position of the cursor on the text display.
The argument is ignored, but must be a valid Applesoft expression.
[5.2.4]

PR#

Syntax: PR# aexpr
Example: PR# 1

Specifies the destination for subsequent output. The example causes
subsequent output to be sent to the device in expansion slot 1. [5.2.1]

PRINT

Syntax: PRINT [{expr[+|3]}]
Example: PRINT
PRINT A%, "X = "; X

Writes a line of output to the current output device. The first example
writes a blank line; the second writes the value of variable A%, fol-
lowed at the next available tab position by the string "X =", fol-
lowed immediately by the value of variable X.[5.2.2]

READ

Syntax: READvar[{svar}]
Example: READ A B%+ C%

Reads values from DA T A statements in the body of the program.
The example reads values into variables A, B%, and C%. [5.1.4]

RECALL

Syntax: RECALL name[%]
Example: RECALL MX

Reads values into an array from a tape cassette. The example reads
values into array M. [M]

Summary of Applesoft Statements and Functions

	Apple][Ref-1978-1
	Apple][eRef-1982-2

