Planning a Computerized
Measurement System

An introduction to digital processing of analog signals

Instead of peering at a wandering
meter dial or at a squiggly line on a
strip chart, why not let a computer
get the eyestrain? Better yet, why not
let the computer process that infor-
mation as well as collect it?

The key to getting the most out of
computerized measurement is careful
planning. You need to: decide how
often to sample the data signal and
with what resolution, choose what
computations will be performed by
the computer and which ones by cus-
tom analog or digital circuitry, and
decide what information to process
in real time (while the measurements
are being made) and what informa-
tion to save for later processing.

Sampling Data

A measurement system must
usually deal with a signal that is the
voltage analog of some physical vari-
able. To perfectly record such a sig-
nal, you would need to note its exact
value at every moment. This isn't
practical, so the task is to take
samples of the signal with enough
frequency and accuracy that you can
store a reasonably close facsimile of
the signal. However, how frequent is
frequent enough?

The Nyquist sampling theorem says
that the sampling rate (the number
of data samples taken per second)
should be at least twice the frequen-
cy of the sampled waveform. Con-
sider, for example, a periodic signal
with a fundamental frequency of
about 3 Hz (e.g., the arterial blood-
pressure waveform of someone exer-
cising). If you were to accept a recon-
struction consisting of the fundamen-
tal and up to the fifth harmonic (18
Hz), then you would need to sample
the signal at least 36 times per sec-
ond. As another example, consider a
digital audio system. It would have
to reconstruct signals of up to 20 kHz,
so it would need to have a sampling
rate of 40,000 per second.

Even a high sampling rate is not a
guarantee of accurate signal repro-
duction. Accuracy also depends on
the resolution of the A/D (analog-to-
digital) conversion. In other words, if
you have an A/D converter that can-
not detect voltage differences of less
than one-half volt, then you should
not expect great accuracy when you
feed it a signal that varies from 0 to
0.75 volt. A 12-bit A/D converter
limits your ability to reconstruct a
signal to 1 part in 4096 of the full

range of the converter. Thus, if the
12-bit converter has an input range of
—10 to 10 volts (so that it has a resolu-
tion of about 4.9 millivolts) and your
signal varies from 0 to 0.5 volt, your
maximum accuracy is about 1 per-
cent.

The choice of sampling rates is one
of the really critical parts of planning
a computerized measurement system
because the choice sets the limits on
the amount of signal processing that
any particular computer can do.
Doubling the sampling rate extracts
two penalties: it doubles the over-
head associated with servicing the
A/D coverter, saving raw data, and so
on; and it can more than double the
processing time associated with mak-
ing computations on the data. Thus,
you should always choose the lowest
sampling rates that will allow accept-
able resolution of the features of in-
terest in signals.

" Note that errors occur when your
system monitors signals that have fre-
quency components above twice the
sampling frequency. Aliasing occurs
when the sampling rate is slightly dif-
ferent than some multiple of a high
frequency component of the signal.
When that happens, a spurious low-



frequency signal appears to be pre-
sent. Even if aliasing does not occur,
frequencies in the signal above the
sampling bandwidth appear as noise
in the sampled data. The solution to
these problems is not to increase the
sampling rate, but rather to decrease
the signal’s bandwidth before it is
sampled. I will discuss next how this
and more may be accomplished.

Analog Preprocessing

Useful signal-processing systems
existed before the advent of electronic
digital computers. Millions of hours
of effort have been directed at design-
ing analog circuits that perform com-
putations on the analog representa-
tion of measured variables; analog
computers built from such circuits are
still used for some types of modeling
tasks.

Virtually all measurement systems
do some analog processing. For ex-
ample, the conversion of a physical
variable into an electrical signal is an
inherently analog process; this trans-
formation is usually accomplished by
a special-purpose device—a trans-
ducer—and associated electronics.
The transducer and its electronics are
often purchased as a package over
which a user has little control. Con-
sequently, most such packages do not
produce the optimal signals for diges-
tion by the computer in any par-
ticular setting,.

The signal from the transducer
electronics is unlikely to be the best
size for your A/D converter, or you
might be interested in only a re-
stricted part of its full-scale range.
Very often the transducer bandwidth
will be too high for the appropriate
sampling rate, or high-frequency
noise will have crept into the signal.
Thus, every A/D converter in a gen-
eral-purpose measurement system
should have some means of adjust-
ing the range, offset, and bandwidth
of signals. Figure 1 illustrates a sim-
ple analog circuit that performs these
services for noncritical applications.

The operational amplifiers that you
use in this circuit are not critical for
the component values shown. The
first stage of the circuit has a gain of
negative one and provides input zero
offsets from —10 to +10 volts. This
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Figure 1: An analog signal-conditioning circuit.

stage also acts to limit high frequen-
cies via the first-order, low-pass filter
created by the capacitor, C, in the
feedback loop; a value for C (in
microfarads) of 3.2 times the sam-
pling interval (in seconds) will result
in 3-dB (about 30 percent) signal at-
tenuation at one-half the sampling
rate and 6-dB (one-half) per octave
roll-off at higher frequencies. The sec-
ond stage provides adjustable gain
from 0.5 to 10; if zero offset is ad-
justed first, the gain and zero will not
interact. Since each stage inverts the
signal, the output has the same
polarity as the input. Input im-
pedance is 100 kilohms. For circuit-
error analysis or more sophisticated
designs, see references 3 and 4.
Analog processing can reduce the
required sampling rate or relieve the
computer’s processing load. As an
example where analog processing
might be useful, consider a situation
in which you need to know the peak
pressure generated by an explosion.
The required sampling rate might be
more than 10 million samples per sec-
ond and thus beyond the capacity of
all but extremely expensive, special-
purpose processors. An analog cir-
cuit called a peak detector would
allow even a slow computer to sam-
ple the peak value at its leisure.
Analog processing can also im-
prove accuracy in some cases. Sup-
pose you are interested in the dif-
ference between two signals of
almost equal magnitude. Using a
computer to do the subtraction could
leave only a few bits of accuracy left
in the difference, and you have

doubled the computer’s work load by
making it sample two signals instead
of one. An analog differential ampli-
fier would perform the subtraction
and preserve computer processing
time and accuracy.

Hundreds of analog circuits have
been designed to do all sorts of useful
processing, and for very fast compu-
tations they are usually the method
of choice. As a general rule, where an
analog circuit is available to perform
some calculation, it will do it faster,
but less accurately and less flexibly,
than a computer. References 1 and 2
will get you started with analog-
circuit design, and references 3 and
4 give a number of circuit designs for
analog processing.

One other class of signal prepro-
cessing—event counting and timing—
needs to be discussed. Using a com-
puter for event counting and/or tim-
ing is like using a howitzer to kill
flies. There are inexpensive digital cir-
cuits designed expressly for the pur-
pose of counting and timing events
and then feeding the results to a gen-
eral-purpose computer. Many A/D
converter cards for popular micro-
computers contain at least one such
circuit, and expansion cards designed
to count and/or time multiple events
are also available. It is generally ap-
propriate to use a computer for event
logging only when you have com-
puter power to burn or when an
unusual amount of signal processing
needs to be done to determine what
constitutes an event. In most situa-
tions, the simple 1-bit A/D circuit
called a comparator (ie., a level



detector) will suffice for identifying
events.

Digital Signal Processing

The big advantages of digital over
analog processing are accuracy and
stability. Once a data value is present
in a digital system it can be main-
tained or manipulated with no loss
of accuracy. It is extremely difficult to
design analog circuits that can pre-
serve even 0.1 percent accuracy;
noise, drift, and nonideal device pro-
perties are a constant challenge.

Computations that require the ac-
cumulation of information over long
time periods are especially difficult to
implement with analog circuits be-
cause electronic storage elements
(capacitors) are limited in size and
number for practical designs. Digital
processing is almost always the way
to go when data needs to be held for
more than about 30 seconds. I once
needed to generate a very slow (20
minute) voltage ramp for controlling
an experiment; the analog circuit to
do this is theoretically trivial, but the
practical solution was not. It was
easier to use a digital counter to pro-
duce a numerical ramp combined
with a digital-to-analog converter to
get the voltage.

Because digital circuits are so good
at holding data, signal processing
tasks are now possible that were im-
practical when only analog delay-
lines or tape loops were available for
storing data. These tasks are those
that require looking back in time.
Thus, a digital processor can conve-
niently make computations with
respect to an event based on signal
values sampled substantially before
the event.

An example of digital processing
that illustrates most of its strengths
is the computation of average tran-
sients. In many real-world situations,
the desired signal is buried in noise
that cannot be eliminated by analog
filtering (if the signal and noise have
similar frequency spectra, there is no
general way to filter out the noise
without filtering out the signal as
well). The average transients tech-
nique comes to the rescue when
there are multiple chances to observe
the same signal. By averaging many

observations of the signal plus noise,
the signal gets reinforced while the
noise is averaged out toward zero; the
signal-to-noise ratio is improved in
proportion to the square root of the
number of observations. A neuro-
physiologist might use such a system
to help determine which neural path-
ways lead to the blink of an eye, and
oil company geologists use them to
separate experimentally generated
seismic signals from background
noise.

Using a programmable computer
to do digital processing confers two
vast advantages over custom-de-
signed digital circuitry—flexibility
and ease of development. These ad-
vantages save so much time and
money that only defense contractors
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are likely to be found designing cus-
tom digital circuitry when a program-
mable computer could do the job.

In the rest of this article I will
assume that you are using a general-
purpose mini- or microcomputer for
signal processing. However, you
should be aware that microprocessors
designed specifically for real-time
signal processing have been available
for the past few years. These proces-
sors usually have on-chip 8-bit
analog-to-digital and digital-to-analog
converters, hardware multipliers, and
very short cycle times. The processor
designs are generally optimized for
digital filtering (see reference 5), but
they might also be used as an alter-
native to analog processing in numer-
ous other applications where signals
have frequency components up to
about 100 kHz.

Real-Time versus Batch
Signal Processing

Let us assume that you have de-
cided what needs to be measured,
applied appropriate analog and/or
digital preprocessing, arranged for
data sampling at close to the optimal

(i.e., lowest) rate, and have some data
processing in mind for the computer
to-do. At this point you need to de-
cide what calculations to do as the
data is being collected (in real time)
and what needs to be saved for later
processing in off-line or batch mode.

Any result used for feedback dur-
ing a measurement session clearly
needs to be calculated in real time.
These results might be used in exper-
imental control or perhaps to provide
a visual display as the data is being
collected. At the other extreme are
the situations where you haven't de-
cided just what sort of analysis you
will want to apply to the data or
where the hardware or software nec-
essary for an analysis is not available.
In these cases, data must be saved for
later analysis. When the choice be-
tween real-time and batch data pro-
cessing is not clear, the following
points should be considered.

The advantages of batch processing
of measured data are twofold. First,
you do not need to decide before
every measurement just what analy-
sis will be done. In most cases, data
processing that occurs in real time
(whether done by analog circuits,
digital circuits, or a computer) re-
duces the information content in the
signal and thus precludes some types
of later analysis. Saving raw data for
batch processing can therefore allow
much greater flexibility and can pos-
sibly save having to rewrite a real-
time data collection program every
time a new type of data analysis is
desired. The second major advantage
of batch data processing is the abil-
ity to perform computations that re-
quire more time than is available in
real time. Complex digital filtering,
statistical or correlation analysis, and
most types of mathematical trans-
forms, for example, all require more
processing time than is available in
many measurement situations.

The advantages of real-time data
processing are also twofold. First, the
amount of data that needs to be
printed or saved on mass-storage
devices is usually greatly reduced,
since only results need to be saved
rather than all of the data that had to
be sampled to resolve the features to
be analyzed. If your required sam-



pling rate exceeds your capacity to
save data, this consideration will
mandate at least some real-time data
processing.

The second advantage of real-time
data analysis is. that it relieves you
from having to do it later. This may
seem obvious and unimportant, but
it can have a major impact on overall
computer usage. In one application,
I was able to reduce the batch-pro-
cessing time for a 3-hour experiment
from 6 hours to a few minutes by sav-
ing only data that had been partially
preprocessed in real time. (The ap-
parent magic involved in doing 6
hours worth of processing in 3 hours
of real time resulted from the fact that
the real-time program had to be effi-
cient, while the batch program didn’t
have to be and wasn't.) As a rule of
thumb, I normally consider any mea-
surement situation with more than
100,000 data values per hour to be a
good candidate for some real-time
processing to reduce the burden of
data storage and subsequent batch
processing.

How do you determine if a par-

ticular analysis task can be done in
real time? Time constraints will deter-
mine the answer, and I have a few
simple rules to help you make an
estimate. The first step is to estimate
the minimum sample cycle time. This
is the time required to collect a
sample, save it somewhere, and do
all associated housekeeping. This
time depends on both hardware and
software; it might be as low as 10
microseconds for a fast analog-to-
digital converter being controlled by
a well-written assembly-language
program, or it might be 10 millisec-
onds for a simple converter being
controlled from an interpreted BASIC
program. This time sets an absolute
upper limit on the total sampling
rates of all sampled channels and,
thus, on effective measurement
bandwidths.

Next, you have to estimate the
average processing time you need to
execute your data-analysis algorithm.
It is often easiest to do this by writing
a test program that applies the algo-
rithm to a known quantity of dum-
my data. The average sample cycle

wr

time can then be computed as the
sum of the minimum cycle time and
the average algorithm-processing
time needed for each sample. This
time sets the absolute limit on the
data sampling rates that can be main-
tained while still performing the de-
sired analysis.

Finally, examine your algorithm
and all real-time tasks that you plan
to do to find the most time-consum-
ing set of conditions that could be en-
countered; we'll call this the maxi-
mum sample cycle time. This time
will normally be much longer than
the average sample cycle time since
occasional tasks, such as updating a
screen display or dividing sums to
get averages, can consume many ma-
chine cycles. :

If you write only the most straight-
forward data-collection program,
your sampling rates will be limited by
the maximum sample cycle time. In
this simplest programming ap-
proach, each sample is collected and
analyzed before getting the next
sample. Thus, you need to leave
enough time between samples to do

-



your most time-consuming jobs or
you will lose data. An alternate but
trickier programming approach lets
the sampling interval approach the
average sample cycle time by collect-
ing and saving samples asynchron-
ously with respect to other process-

ing tasks. For more information about .

efficient real-time programming tech-
niques, see references 6 and 7.
A Real-World Example

To illustrate and summarize the
principles outlined in this article, I
will briefly describe BEAT, a real-time
program I wrote to monitor experi-
ments in cardiovascular physiology.
The overriding characteristic of car-
diac signals is that many of the most
interesting things happen very fast
(as the heart contracts) but not very
often (once per cardiac cycle). BEAT
was designed to capture this informa-
tion from each heartbeat.

I measured blood flow and pres-
sure in the ascending aorta (the big
artery leaving the heart) using spe-
cialized transducers with associated
electronics. Analog circuits scaled
and filtered the signals as needed by
the 12-bit A/D converter and the sam-
pling rates. The 12-bit accuracy of the
converter was more than sufficient,
since the transduction and analog
processing left the signals with an ac-
curacy of only 1 percent.

Ascending aortic flow is nonzero
for a relatively brief part of the car-
diac cycle (for about the 150 millisec-
onds when the left ventricle is con-
tracting and the aortic valve is open).
Since the peak flow is stable to within
1 percent for only about 4 millisec-
onds, I chose a sampling rate of 250
per second for this channel (a band-
width from DC to 125 Hz). Due to the

dynamic characteristics of the arterial
tree, aortic blood pressure changes
much more slowly than aortic flow;
a bandwidth of only 30 Hz allowed
reconstruction of the pressure wave-
form to well within 1 percent accu-
racy. Thus, the arterial pressure chan-
nel was sampled at one-fourth the
rate of aortic flow samples. The raw
sample rates for these two variables
plus others I measured were about
1000 per second. The raw data from
a typical 5-hour experiment would



have required about 36 megabytes of
mass storage. It was a clear candidate
for real-time processing.

I needed to calculate: the cardiac
cycle length, the integral of aortic
flow minus its value just prior to a
heartbeat (the stroke volume), the
average pressure, the systolic and
diastolic pressures, the maximum
rate of change of pressure, and
similar sorts of information about
other measured variables. BEAT ex-
tracted this information from the raw
data samples for each heartbeat and
then saved the computed values on
a mass-storage device.

The analog and custom digital cir-
cuits I would have needed to dupli-
cate my computerized system would
have been complex, inflexible, and
difficult to calibrate. For instance, the
stroke volume computation required
looking back after detecting a heart-
beat to the period when aortic flow
was known to be zero. Current flow
transducers suffer from slow zero
drift, so an analog circuit to compute
stroke volume would have been an
endless source of frustration.

Reference 8 outlines the problem in
more detail and explains some other
tricks we can do with the computer
and aortic flow.

The processing time necessary to
sample data, keep running sums,
compute extrema, and so on, re-
quired about one-fourth of the avail-
able machine cycles. However, at the
end of each cardiac cycle, BEAT had
to perform tasks that required about
150 milliseconds. These tasks in-
cluded preparing the extracted data
for writing to mass storage and pass-
ing the data along to the device con-
troller, computing a number of de-
rived variables (heart rate, the current
time, average pressure, etc.), convert-
ing the derived variables to engineer-
ing units and displaying them on a
video monitor, echoing the derived
values as analog voltages via a set of
digital-to-analog converters, testing
the keyboard for any special instruc-
tions from the user, and initializing
in preparation for processing the next
beat.

The time required for end-of-beat
processing presented a programming

dilemma. I might have ignored 150
milliseconds of the measured vari-
ables after the end of each beat’
(thereby missing the most important
part of the cardiac cycle), or I might
have forgone some or all of the end-
of-beat processing. Both of these un-
palatable alternatives were avoided,
however, because even at the highest
observed heart rates, only about 85
percent of the computer’s time was
needed to do all sample and end-of-
beat processing. The problem was to
somehow keep sampling data at the
proper times even when the com-
puter was busy with the time-con-
suming end-of-beat tasks.

The job of independent data sam-
pling was relatively easy for BEAT
because the A/D converter was a
smart device that could be pro-
grammed to collect samples and save
values in its own memory. Analog-to-
digital converter systems with this
sort of independent processing capa-
bility are becoming commonly avail-
able; for example, Data Translation
makes them for the IBM PC that sell
for $1200 and up. In the more usual



case where a smart analog-to-digital
converter is not available, the same
independent effect can be achieved
with a simple service routine that is
called via hardware interrupts gen-
erated by a clock. The usual time cost
for such servicing might be 50 to 100
microseconds for one channel plus 10
to 30 microseconds for each extra
channel sampled.

The BEAT program was largely
written in a relatively inefficient com-
piled version of BASIC; only one
small routine to maintain the sample
buffers needed to be written in as-
sembly language. This illustrates the
point that you don’t need to be an ex-
pert assembly-language programmer
to write useful measurement-moni-
toring programs. Once you have
written (or gotten someone else to
write) the possibly tricky routines to
sample signals and maintain a well-
organized buffer of sampled values,
then, with only reasonable care and
programming skills, you can turn
your computer into a flexible data-
collection and signal-processing
tool. m
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Designing Systems for
Real-Time Applications

Some pointers to keep in mind before you tackle a real-time design

A real-time system is one that
responds immediately to your com-
mands and processes data as soon as
the data is produced. The opposite of
a real-time system is a batch system,
which batches commands together
and processes them en masse, with
no concern for immediate response.

Most personal computer users are
familiar with applications that require
some real-time operations. For in-
stance, simple text editing or word
processing must provide timely
response to keystrokes and com-
mands to prevent user frustration.
Games require even more demand-
ing real-time characteristics.

Applications that involve audio-
frequency monitoring are quite de-
manding. To accurately sample data
where the frequency is 15,000 Hz
(moderately high fidelity—my stereo
does 20 kHz, my ears do 12 kHz) re-
quires 30,000 samples per second.
Program-controlled sampling can
often go no higher than 1000 to 5000
samples per second, so audio
monitoring clearly requires special-
ized hardware and DMA (direct
memory access) devices.

When designing a real-time sys-
tem, you need to consider the perfor-
mance of the hardware and the
operating system. By hardware I
mean the processor chip, the bus

structure, the memory-management
scheme, and the interfaces to the out-
side world. By operating system I
mean the program that directly con-
trols your hardware and acts as the
interface between your application
program and the hardware.

Hardware

Eight-bit processor chips are ideal
for character processing and low-
precision analog work. However,
they have limited performance when
greater precision or address space in
excess of 64K bytes is needed.

Sixteen-bit microprocessors match
the precision of the most common
A/D (analog-to-digital) converters
(with 10-, 12-, and 14-bit A/D con-
verters most common). Unfortu-
nately, microprocessors often run in-
to address-space limitations when a
large volume of data is needed.

The popular 32-bit microprocessors
offer a large, linear address space, fast
cycle times, and efficient program-
processing characteristics. These are
essential to success in real-time
operations.

A factor in performance that goes
beyond the speed of the processor
chip is the delays the processor en-
counters in fetching data from mem-
ory. One example of this is the
TRS-80 Model 16, which has a

relatively slow 68000 processor biit
which encounters little delay in
fetching data from memory because
it has memory directly on board the
processor. The Exormacs computer
uses a higher-speed 68000 chip, but
it has greater fetch delays due to the
use of a standard (Versabus) memory
interface and slower RAMs (random-
access read/write memories). A sec-
ond example is the Universe 68 com-
puter. When using the memory bus
(which is also a Versabus), it has one
rate of processing. However, when
using the 4K-byte cache memory, an
onboard fast memory, it has double
the instruction-processing rate.

The second hardware factor in de-
signing a real-time system is the
system bus. A good system bus
allows a range of interfaces as well as
sufficient bandwidth so that the sys-
tem can accomplish all tasks within
a reasonable time. If all the interfaces
required are on the basic system (as
in a single-board computer), the sys-
tem bus is not an issue. But the varie-
ty of real-time applications and the
special nature of some of the inter-
faces deem this unlikely.

Only three design choices are cur-

- rently available for nonproprietary

32-bit buses: Versabus, VME, and
Multibus. Versabus and VME have
the largest number of available inter-



faces because they are older buses.
Adapters permit the use of the
smaller VME and Multibus boards in
Versabus card cages, which gives this
bus an additional short-term interfac-
ing advantage.

A real-time system’s memory-
management design must be as care-
fully considered as the processor and
system bus. Where performance is a
critical issue, memory response time
must be reduced. Some of the factors
that influence memory response time
are memory-management logic, bus
drivers, dynamic-RAM refresh logic,
and error-detection and error-correc-
tion circuits.

We shouldn’t forget the real-time
clock or timer circuit—traditional
elements of real-time environments
for good reasons. One of these is
needed if time-related operations or
rigid time intervals are involved.
However, time-out logic is also
needed to avoid deadlock and other
error conditions. For example, in a
game that uses multiple sprites (mov-
ing graphics image units), where the
images associated with two different
sprites attempt to affect the same
item (say, eating a cookie) but only
one can be allowed to do the task, a
locking mechanism is needed. Either
sprite A is locked out and sprite B has
access, or vice versa. Given a bit
more complexity, it’s possible to have
A locked out waiting for B, B locked
out waiting for C, and C locked out
waiting for A. With everything
locked, all activity ceases. One way
to detect this condition is a time-out
that allows a program to regain con-
trol and determine if such a deadlock
has occurred. Another way is for a
task to release any items it has in case
of time-out so that another task can
continue.

In many real-time applications, the
computer must be connected to a
remote device (or another computer)
via a serial port. This has become in-
creasingly popular with the many
low-cost processors being built into
data-collection and display devices.
RS-232C and RS-422A are the most
common types of connections.
RS-422A can operate over longer
distances and with better noise im-
munity than can RS-232C. For exam-

ple, 50 feet is the limit on an RS-232C
interface operating at 9600 baud, but
an RS-422A interface can easily run
up to 4000 feet at this same rate.
The control lines in RS-422A and
RS-232C cables are heavily used in
real-time applications to provide
essential flow control over data trans-
mission. For many system configura-
tions, read, write, and ground are the
only required lines in a connection.
Some real-time system designs
employ software routines such as the
XON/XOFF sequence (usually Con-
trol-S/Control-QQ) to control data com-
munication flow. This routine sends
a character back up the line to in-
struct the transmitting system to stop
sending data. A second character in-
dicates that data transmission is to
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only by programs that
directly control the
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resume. Full-duplex data transmis-
sion (simultaneous data reception
and transmission) requires multitask-
ing capability to monitor the receive
data line while transmitting to ensure
that a control signal or message is not
received that could change or affect
the transmission in progress. For
those communications ports that do
not support full-duplex communica-
tions (which prevents the use of the
XON/XOFF controls), slower baud
rates ensure successful transfers but
hurt the real-time power of the
system.

The Operating System

Some real-time tasks can be accom-
plished only by programs that direct-
ly control the computer with no in-
tervening operating system. How-
ever, as long as your task can tolerate
the delay, it is better to use one of the
standard operating systems now
available.

The ideal operating system would
have multiuser, multitasking, and
real-time capabilities. Incidentally,
multiuser development is advan-
tageous even for single-user systems

because it allows the execution of
several simultaneous tasks, for exam-
ple, editing one program while
another is being compiled. Unix is an
example of an excellent multitasking
operating system, although it is not
suitable for many real-time tasks.
However, modified Unix and Unix-
compatible systems that do provide
real-time facilities are available. An
example is the HP/Unix system,
which has a real-time kernel written
by Hewlett-Packard that interfaces at
the system-call level to Unix. Another
example is the Unos operating sys-
tem.

For real-time tasks, the operating
system must let the programmer have
control of I/O (input/output) devices,
physical memory, task priorities, ex-
ception processing, and data integ-
rity. A programmer must control I/O
devices to monitor and control the
computer’s peripherals. PEEK/POKE
control is one form of this, but often
a task is set up to run when an exter-
nal condition changes, such as when
the user pushes a button or the fire
alarm sounds. For this, the system
must provide an interrupt facility and
the ability to pass control back to a
specific user task.

Control over physical memory is
needed to avoid swapping and to
control data flow. Swapping, the
automatic exchange of information
between memory and a mass-storage
device, can result in a change of
memory location or, worse, in signifi-
cant delays when that fire alarm
sounds and the service task cannot
be swapped back into memory. The
ideal operating system would let the
programmer inhibit swapping and
identify and control physical-mem-
ory areas for buffering data from I/O
devices. Sharing these areas between
tasks can be essential when one task
performs data input, a second scales
the data, a third records the normal-
ized data to disk, a fourth analyzes
data for statistical evaluation, and a
fifth uses the current statistics to con-
trol an external device. Shared mem-
ory and asynchronous operations are
needed for this to work efficiently.

In the preceding example, the pro-
grammer must be able to control the
priorities of tasks to make sure that
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Figure 1: An example of task scheduling by the Unos operating system.

the real-time tasks are not stopped in
favor of a less important task. Prior-
ity control mechanisms let the pro-
grammer decide and control which
tasks get the processor. In the ulti-
mate real-time system, each task is
guaranteed a worst-case delay to en-
sure that the task has enough time to
complete its job when activated. As
with any other real-world situation,
Murphy usually gets his way, and
this has to be taken into considera-
tion when setting task priorities.
Some tasks simply may not be com-
pleted.

An operating system should pro-
vide dynamic priority-scheduling of
tasks. In Unos, a Unix-like operating
system, each task has a ceiling and
floor priority with the numeric value
of the ceiling greater than or equal to
the floor. Normal timesharing users
get a 100-10 assignment. A user can
lower either value, but only privi-
leged users can raise the values. If a
timesharing task becomes compute-
bound (completes a time slice with-

out waiting for I/O), it is automatical-
ly dropped in priority so it will not
interfere with interactive users. The
example in figure 1 starts with the
real-time task running at priority 200.
A real-time task would have the floor
and ceiling equal and swapping dis-
abled for that task. When the task at
the higher 255 priority is ready to
run, it preempts the 200-level task
and starts running. When both of
these block, the processor is again
available to time-slice between the
timesharing users at priority 100.
With these tasks blocked, tasks at
levels 10 and 5 get an occasional shot.
For tasks on the same level, round-
robin scheduling is used, with either
time slicing or blocking being the
method of passing control. If a real-
time task becomes compute-bound,
it can use all the resources it needs
to the exclusion of other tasks. This
is essential in giving real-time tasks
the control they need and explains
why the raising of priority levels is a
privileged operation.

Bell-
Licensed
UNIX and
UNOS

Development
System

Run-Time
System

If no abnormal conditions existed,
exceptions would not occur, and real-
time programming would be in-
credibly simplified. But the nature of
real time ensures that many error
conditions may occur. These require
an additional level of asynchronous
control by the programmer. In pro-
cess-control-related tasks, lost control
is fatal to the success of the applica-
tion. This means checking for all ob-
vious error conditions related to pro-
gram operations (e.g., I/O errors and
arithmetic overflow/underflow).
Also, the program must be prepared
to trap a number of other error con-
ditions that are not related to its im-
mediate operations. This includes
conditions such as communications-
line errors, disk and/or memory
errors, and power failures.

Programmers can maintain controi
over data integrity if the operating
system forces critical data to a disk in
the event of a system failure. A power
failure is only one example of an ex-
ternal event that can have a severe
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Figure 2: The components of delay in a computer as it attempts to respond to a real-time event.

impact on the integrity of the data be-
ing collected. You can expect to lose
RAM to this or other failures; so, for
real-time processes, a mechanism is
needed for determining what data
has been lost and what data is still
valid. The worst case is exemplified
by the many systems that have actu-
ally lost the integrity of their entire
disk-file system after an abnormal ter-
mination. In that case, all data is lost,
even that successfully written to and
stored on disk. This can be avoided
with data-integrity features in the
operating system.

Performance Measurement

Two major areas of performance
measurement are interrupt latency
and context-switching time. Interrupt
latency is the longest time that the
computer takes to act on a single in-
terrupt. Only the highest-priority in-
terrupt (which is usually called non-
maskable because it must be acted
upon, that is, it cannot be “masked
out”) is always acknowledged within
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the interrupt-latency period. Lower-
priority interrupts must wait if a
higher-priority interrupt is active.

Context-switching time is the time
required to stop execution of task A,
save that task state, and restore the
state of and start task B. This switch
might occur as a result of an inter-
rupt, a synchronization signal be-
tween tasks, or a time slice. Note that
the number quoted in some micro-
processor ads simply reflects the
switch between the user mode and
system mode and does not include
the overhead needed to enter a sec-
ond user task.

If the real-time application requires
sampling data at a high rate, the
context-switch transition can be a
limiting factor. A millisecond (ms)
response time would limit processing
to 1000 samples per second. To im-
prove this, data can be buffered in the
driver (with 50-microsecond (us)
overhead, or a limit of 20,000 samples
per second) and the application task
given control on every nth sample.

Notice that the limits of 1000 or 20,000
samples per second imply that the
system performs no other functions,
no time-of-day updates, no disk I/O,
and no computations. This, then,
does not provide a practical limit but
rather a way to measure the percent-
age of utilization that a specific ap-
plication requires.

The interrupt latency and context
switching, along with other factors
such as the application program,
determine the elusive and overused
term—response time. It entails a few
measurable time delays and a num-
ber of application-code-related
delays. The result is a response-time
measure that becomes quite depen-
dent on the actual application, and
it cannot be predicted in advance.

In figure 2, the delays encountered
by an external interrupt are

1. The hardware delay in signaling
the processor. Daisy-chaining of
interrupts can delay this, as can
the current bus cycle. Interrupt



masking, disable logic, and pri-
orities can all add delays. If the
interrupt is not of high enough
priority, or if it is currently
masked or disabled, it will wait.
Saving the previous state of the
processor on a system stack
somewhere. Operating systems
often take control at this point to
save even more information to
make sure the previous state can
be recovered and continued.
The device driver, which uses
some convention to indicate the
occurrence of an event. It then
releases control, with some addi-
tional overhead needed to restore
the previous state of the system.
The previous state may be the
service of another interrupt; this
could continue for a while, with
various delays and additional in-
terrupts, before any processing
occurs at the user’s task level.
Operating-system housekeeping.
These delays can be quite sub-
stantial. (One minicomputer
“real-time” operating system I
have used quite often can pro-
duce multiple minutes of delay at
this point!) The highest-priority
task that is ready to run needs to
be identified now, and this may
require a context switch. The
context switch saves the state of
the previous operating task and
allows a new (presumably higher-
priority) task to take control. This
time is one that can be
measured.

5. The user’s task itself. If swapping
from disk is required to load the
user’s task, the delay may be
greater than 100 ms.

A number of techniques can im-
prove performance. By moving the
sampling logic to a DMA controller
and moving blocks of data to main
memory with interrupts every 100th
or 1000th sample, the host processor
has more time for its operations.
Similarly, addition of hardware to
perform floating-point calculations or
array processing can provide addi-
tional performance boost. Finally, the
disk-interface hardware can limit the
data logging and output rate. For a
disk, system facilities that allow an

application direct control over disk -

blocking, and the creation and use of
contiguous disk files, can signifi-
cantly increase performance. For
some microsystems, all the files are
contiguous and are limited in size
and dynamic growth by this charac-
teristic. In larger systems such as
Unix, this reverses, with dynamic
growth given the preference and lit-
tle or no facility for contiguous disk-
file control. Contiguous files are
favored because the use of physical-
ly adjacent blocks of disk space
allows the application to transfer data
with just rotational delays, usually 2
to 10 ms, rather than the 10- to 100-ms
seek delays. Faster disks and disk
caching can also provide a way to
deal with this limit on performance.

Conclusion

Both the systems manufacturer and
the application developer must fully,
realize the relationship between the
hardware and operating system if
they expect to develop products for
the real-time world. While processor
performance is only one element of
this, careful hardware design using
higher-performance buses and accel-
erators such as cache, memory man-
agement, and arithmetic processors
is quite critical. Once the hardware
is defined, the operating system (and
language used) must be able to take
advantage of that hardware and give
the programmer efficient control over
the real-time environment. Finally,
the application program must take
into consideration not only all the
hardware characteristics but those ex-
ceptional conditions that are almost
guaranteed to occur. This will ensure
that the application does not get
caught in slowdowns related to mem-
ory control, addressing, priority,
device drivers, abnormal conditions,
and/or other applications that should
not be affecting the real-time
process.®

James Isaak (983 Concord St., Framingham, MA
01701), the director of product marketing for Charles
River Data Systems, has an M.S.E.E. from Stanford
University. He enjoys camping, skiing, and
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moments with personal computers as applied to
genealogical work.




Laboratory Data Collection
with an IBM PC

A versatile hardware/software combination

You have a new IBM Personal Com-
puter (PC) and you want to use it in
the laboratory to collect data from a
scientific instrument. How do you do
that with a small investment of time
on your part and still get a product
that is a powerful, useful tool in the
laboratory? '

I faced that same problem almost
two years ago when our chemistry
department received its first IBM PC,
and I wanted to interface it to a vari-
ety of chemical laboratory instru-
ments. We had only one of each type
of instrument, so I was faced with the
possibility of designing a custom in-
terface for each of 10 or more
instruments.

Fortunately, I had interfaced single
instruments to a DEC LSI 11/23 and
to an Apple, so I knew from my own
previous mistakes. that a little ad-
vanced planning would make this a
much simpler project. Specifically, I
realized that interfacing can be made
much easier by using two simple con-
cepts: first, buy commercially avail-
able hardware where possible, and,
second, develop general-purpose
software that can be used for almost
any instrument.

By utilizing these two concepts, I
found that even undergraduate chem-

istry students with little previous
computer experience can produce
research-quality interfaces, with com-
plete software, in less than one week.
If you follow the suggestions pro-
vided here, you should be able to
design and implement an interface to
the instrument of your choice in less
time. All you need to do is be able to
program in BASIC, FORTRAN, or
some other language that allows the
use of assembly-language subrou-
tines.

The essential elements of this sys-
tem are a commercially available
data-collection board that fits in one
of the slots of the IBM PC, a pre-
amplifier and filter for conditioning
the signal from the instrument, and
a set of BASIC and assembly-lan-
guage routines to perform tasks com-
mon to all of the instruments to be
interfaced.

The utility of this approach arose
fairly naturally from some initial
design decisions. My major criteria
for selection of equipment and soft-
ware were ease of development and
ease of use. Therefore, I judged it to
be not cost-effective to spend time de-
veloping special-purpose A/D
(analog-to-digital) converters, timers,
or other equipment. Similarly, I

chose to use BASIC for all purposes
except the data-collection process
itself because of the ease of program-
ming, even for novices; when the
programs are completely tested, they
are converted to compiled BASIC to
greatly increase their execution
speed.

In order to encourage a variety of
users, I put the (now several) IBM
PCs on carts so that the computers
can be wheeled from experiment to
experiment. Each cart contains a 64K-
or 128K-byte IBM PC with a color-
graphics monitor adapter and green
monitor; dual 320K-byte disk drives;
a combination board containing an
A/D converter, D/A (digital-to-analog)
converter and programmable clock;
and a preamplifier and filter com-
bination. A typical system in use is
shown in photo 1.

Each of the components on the cart
is designed to accommodate inter-
faces to a variety of instruments. If
you are attempting to develop a
similar system, it may help to have a
description of why I selected each
component.

Data-Acquisition Board
Several different manufacturers
now market general-purpose data-



Photo 1: The general-purpose laboratory interface station can be moved easily from instrument to instrument because it is on a laboratory
cart. The IBM PC contains a color/graphics monitor board and a Tecmar Lab Master interface board. The preamplifier box is perched on
top of the larger control device for the polarograph, in the center. The electrodes for the polarograph are at the right side of the photo.

acquisition boards (see reference 4).
These usually include a multi-
channel A/D converter, one or more
D/A converters, and a programmable
clock as standard features, with op-
tions such as programmable gain,
higher acquisition rates, and DMA
(direct memory access). For most
scientific applications, a 12-bit A/D
conversion is necessary; 8-bit A/D
converters simply do not provide
adequate resolution.

In addition, most laboratories now
use nonintegrating A/D converters
rather than integrating types because
of the slow speed of the latter. The
primary advantage of the integrating
A/D converter is the reduction of
noise; however, this can be accom-
plished instead through appropriate
software used with the nonintegrat-
ing type. The A/D converters on
almost all of the general-purpose
data-collection boards now available
are of the nonintegrating type.

While not essential, a program-
mable clock is highly recommended.
Although timing can be controlled by
carefully timed program loops, usual-
ly in assembly language, it is much
more easily and accurately achieved
in hardware.

For these reasons, I chose to use a
Tecmar (6225 Cochran Rd., Cleve-
land, OH 44139, (216) 349-0600) PC-
Mate Lab Master board with a 16-
channel, 12-bit nonintegrating A/D
converter with no programmable
gain and a general-purpose clock/
timer. The board also contains two
D/A converters and a digital I/O
(input/output) section that I do not
routinely use, but which you may
need if you plan to control the opera-
tion of your instrument as well as col-
lect data from it.

Connecting the Interface
In order to use the hardware inter-
face in your lab, you must first con-

nect the interface to the instrument.
If the instrument has a recorder out-
put, this is very easy to do; simply
connect the A/D converter input to
the recorder output wires. For signals
below 1 volt maximum, the pream-
plifier should be interposed between
the A/D converter and the instru-
ment.

Often, particularly on more re-
cently designed instruments, both a
recorder output and a BCD (binary-
coded decimal) or other computer-
compatible output exist. If there is a
computer output, no A/D converter
is needed; instead, a digital 1/O
board, serial interface, or other hard-
ware is required. Unfortunately, I
found that the documentation pro-
vided by Tecmar on the digital I/O
section of the interface board is
almost no help to those who are not
already familiar with this type of
hardware.

Alternatively, if no suitable output
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Figure 1: The schematic diagram for the preamplifier described in the text. The low-pass filter is optional.

is provided, it may be necessary for
someone with knowledge of the elec-
tronics of the instrument to locate for
you the portion of the circuitry
needed to provide a suitable voltage
output to the A/D converter. Where
possible, this voltage should be in the
volt range, rather than in millivolts
(mV) or microvolts (V). Fortunately,
most instruments have recorder out-
puts and consequently are very easy
to interface.

Preamplifier

Depending upon the instrument
being interfaced and the A/D board
being used, varying amounts of pre-
amplification are needed. I designed
our system to accommodate a wide
variety of possible inputs; hence, a
simple amplifier circuit was included
to permit five different gains between
1 and 1000. The amplifier schematic
is shown in figure 1.

Alternatively, a programmable-gain
A/D board may be desirable, al-

though that option is usually much
more expensive than a separate am-
plifier. There is another reason for
separate preamplifiers, however. In-
struments with full-scale outputs of
under 10 mV are common in scientific
laboratories because of the wide-
spread availability of 10-mV strip-
chart recorders. For these instru-
ments, your best alternative is to
build the preamplifier into the instru-
ment itself, or at least to connect it so
that it is as near as possible to the in-
strument. This reduces the amount
of noise picked up by the low-level
signal lines that, in effect, act as
antennas to the various sources of
electronic noise in the environment.
In general, the shorter the distance
between the instrument and the A/D
board, the better the signal-to-noise
ratio will be in the final data.

Filter
The most general solution to noisy
signals is software filtering, because

the filter can be varied to best match
the noise level. However, particular-
ly for low-level signals and low data-
collection rates, e.g., 1-mV signals at
60 Hz (hertz), I have found it useful
to have a hardware filter because of
the large amount of computation
time required for extensive software-
based filtering. For such instruments,
I use the simple, passive, low-pass
filter included in figure 1. This filter
has a cutoff frequency of approxi-
mately 0.5 Hz, which is adequate for
filtering out the most common noise
signals that are 60 Hz or higher in fre-
quency. More expensive filters, in-
cluding active and notch filters, may
be desirable for specific applications.
Almost any “electronics for scientists”
text can be consulted for more details.

Data Collection

‘One aspect of interfacing that texts
often neglect is the need for general-
purpose programs to collect, plot,
and process the instrumented data.




However, by having a suitable library Listing 1: An assembly-language data-collection routine for use with the IBM PC and the
of general-purpose routines, you can  Tecmar Lab Master board.
shorten the development time for

your specific interface considerably.

. TITLE  TIMER
By using the gelleral-purpose data- : 5.C. GATES DEPARTMENT OF CHEMISTRY, ILLINOIS STATE
i i i L UNIVERSITY, NORMAL, IL 61761
co]le:chon, Sn'_lOOthmg' and display ; SUBROUTINE TO DO TIMED DATA COLLECTION FROM TECMAR BOARD
routines described here, you can con- ; CALL FROM BASIC WITH CALL OF FORM:
; CALL TIMER (A%(l),F%,P%,N%,C%,S%)
centrate all of your efforts on develop- WHERE A% 1S ARRAY WHERE DATA ARE TO BE STORED

F%¥ IS OVERRUN FLAG--SET TO ZERO UPON NORMAL EXIT
OTHERWISE SET TO VALUE OF CX REGISTER TO GIVE

ing the device-specific portion of the !

ftw. i i ; NUMBER OF POINTS NOT COLLECTED
30 ,are and e“‘,i up with a higher ; P4 IS 0 TO OMIT REAL-TIME PLOT, OTHER TO PLOT
quality product in a much shorter : N% IS NUMBER OF POINTS TO BE COLLECTED

C% IS CHANNEL NUMBER OF A/D
5% IS5 NUMBER OF DATA POINTS PER SECOND
S% MUST BE <= SPEED OF A/D
IF S% <0 THEN MEANS WANT THAT MANY SEC/POINT

time than if you “reinvent the chip”
for each new interfacing project.
In order to provide high data-

C5EG SEGMENT

collection rates and a real-time plot, ASSUME CS:CSEG, DS:NOTHING
s ey . . HEADER:

I wrote a data-acquisition routine in DB OFDH .CODE FOR BLOAD FILE

3 4 DW 0
assemb_ly l.anlguage. The{ routine illus- i 2
trated in listing 1 provides rates up oW RTN_LEN

- . TEMP DW 2 ;TEMP. STORAGE
to 2400 Hz with a real-time plot, and  rror 0w ? iPLOT FLAG
. . TEMPSI DW s ;TEMP STORAGE FOR SI REGISTER

Llp to 20 kHZ Wlthout Plottmg. Even OVRUN DW 2 ;OVERRUN OF A/D FLAG

faster rates are possible with special ~ ;PEFINITIONS:

: ADDO  =1808 ;BASE OF TECMAR BOARD
hardware settings of the standard 2pp4  =apD0+4 iA/D CONTROL BYTE
ADD5  =ADDO+5 ;A/D CHANNEL NUMBER
Tecmar board, and rates up to 125 appeé  =appo+6 iA/D START
. : ADDE  =ADDO+8 ;CLOCK DATA PORT
kHz are available as an optional fea- ;09  —apposo  Clotk EOREROL LORE :
ture. However, very few instruments iR, PhaR iR
will require higher rates than 20 kHz. ol SRVEBE. -
S s HOV BP, ; SR LI
The routine in hshng 1 assumes the MOV DI, [BP]+6 ;GET DATA POINTS/SEC
use of the Tecmar Lab Master data- 4o i 101 i INIQ BRGRECISTER
acquisition board, so that some of the i"gg gi ' {gﬁ% +8 fGEThﬁgﬁgggEENgngi
code is device-speciﬁc and would HOV DX:ADDS : AND OQUTPUT TO A/D
. dified f h our DX, AL ; (USE ONLY LOWER BYTE)
need to be moditied for use on other 1oV DI, [BP]+10 ;GET NUMBER OF DATA POINTS
nov cx, [DI] ; STORE IN CX REGISTER
systems. FU" MOV DI, [BP]+12 ;GET PLOT FLAG
Although the listing is fully docu- noy A iDLl : STORE IN MEMORY
mented, several comments are re- MOV anléB $SELECT A/D MODE (DISABLE AUTOINCREMENT,
X ; : MOV DX, ADD4 ;  EXTERN. START CONVERSION, ALL INTERRUPTS
quired. First, using the excellent pro- ouT DX . AL Y GAIN=1)
; 5 MOV AX,0 ;S1 IS X-VALUE OF POINT TO BE
cedure suggested by Roulrfs (see: ref MoV TEMPST, AX ; PLOTTED--SAVE FOR LATER
erence 2), the routine begins with a Tilg; .;gﬁs :SET UP EIGH-RES GRAFHICS NODE
header section to enable it to be con- oV DX, ADD6 ;RESET DONE FLIP-FLOP OF A/D
. . IN AL, DX
verted by EXE2BIN to a binary file MOV DX, ADDY ;SET DATA POINTER TO MASTER MODE KEGISTER
that can be loaded into memory with nov AL, 23
a BASIC BLOAD command. Second, MOV DX, ADDE ;SET MASTER MODE REGISTER FOR SCALER CONTKOL=
: : S s d MOV AL,0 ; BCD DIVISION, ENABLE INCKEMENT, 6-BIT BUS,
high-resolution plotting is done ouT DX, AL ;  FOUT ON, DIVIDE BY 16, SOURCE=FI,
using the BIOS VIDEO__IO routine, gﬁ; gi:}éa :  COMPARATORS DISABLED, TOD DISABLED
which is invoked with interrupt 16 (10 Mov DX, ADDY ;SET DATA BOINTER TO COUNTER MODE OF
hexadeciiial) Mov AL,S :  REGISTER 5
exa ; ouT DX, AL
. MOV DX, ADDS ;SET COUNTER 5 FOR COUNT REFETITIVELY,
Three different clock rates are used, MOV AL, 33 :BINARY COUNT,COUNT DOWN, ACTIVE HIGH
i : i - OUT DX, AL :TC, DISABLE SPECIAL GATE, RELOAD FROM LOAD,
depen'dmg upon' the desired d_ata CKP BX, 31 ;CHECK IF >= 31 POINTS/SEC
collection rate. This is done to achieve JGE FAST :IF SO, JUMP TO FAST
; s s X CNP BX,0 :CHECK IF > 0 POINTS/SEC
maximum precision. For high data Je MED 1P 80, JUmMP
rates, the 1 MHz clock in the Tecmar ¢ BRANCH TO HERE IF POINTS/SEC < 0, MEANS THAT WANT LESS THAN
, , ; ONE POINT/SEC.
board is used directly. For rates below  suow: rov ALl JSET 10 100 H (NO GATE, RISING EDGE
31 Hz, a 10-kHz subfrequency of the NEG BX iGET ABSOLUTE VALUE OF BX
. , ; MULTIELY BY 100 TO GET COUNT
clock is used; to use the 1-MHz clock bk oe 150 AR &
directly would require chaining ot B
several of the counters together. Rates ~ ;BRANCE TO KERE FOR 31 TO 20,000 POINTS/SEC--USE 1 WHZ CLOCK
. FAST: MOV AL, 11 ;COUNT AT 1 MHZ (NO GATE, RISING
of less than 1 Hz are counted Wlth a ouT DX, AL : EDGE OF Fl)
_ MOV AX,10000 :DIVIDE 1,000,000 BY PTS/SEC BY
100-Hz Subf'requenc}"- o MOV DI, 100 ; GETTING 10E6 INTO DX+AX
At very high data rates, it is pos- MUL DI =5,
. : DIV BX ;BX=PTS/SEC; RESULT IN DX+AX, BUT
sible that a conversion may take place : IGNORE DX, SINCE DX=0
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I.isting 1 continued:

CHP AX,200 ;DISABLE INTERRUPTS IF >=5000

J6 FAST2 ; FOINTS/SEC
CLI
FAST2: JMP GO
;BRANCH TO HERE FOR 1 TO 30 POINTS/SEC--USE 10 KHZ CLOCK
MED: MOV AL,13 ;COUNT AT 10 KHZ (NO GATE, RISING
ouT DX, AL : EDGE OF F3)
MOV AX,10000 ;CALCULATE NUMBER OF TICKS OF 10,000 KZ CLOCK
CWD i FER DATA POINT BY DIVIDING
DIV BX : 10,000 BY POINTS/SEC
;START CLOCK TICKING AT DESIRED RATE
GO: MoV DX, ADD8& H AND LOAD COUKTER 5 WITH TICKS
DEC AX 3 (COUNT TO ZERO, SO DECREMENT AX
ouT DX, AL : FOR CORRECT COUNT)
MOV BRL, RH
ouT DX, AL ; 8 BITS AT A TIME
MOV DI, [BP]+14 ;GET OVERRUN FLAG ADDRESS
MOV WORD PTR [DI],0 ;ZERO THE FLAG
MOV OVRUN, DI ;AND STORE THE FLAG ADDRESS
MOV DI, [BP]+16 1GET ADDRESS OF DATA ARRAY
MOV DX, ADDY ;LOAD COUNTER 5 FROM LOAD REGISTER
MOV AL,112 : AND ARM (START COUNTING)
out DX, AL
MOV DX, ADD4 ;ENABLE EXTERNAL START (PINS 3 + 4 OF
MOV AL,132 ; CONNECTOR J2 MUST BE CONNECTED)
our DX, AL
;BEGIN DATA COLLECTION; COLLECT UPON EXTERNAL START TRIGGER
DONE: MOV DX, ADD4 ;CHECK IF DATA READY
IN AL, DX
CMP AL, 128 ;BY CHECKING READY BIT (BIT 7)
JB DONE ;LOOP UNTIL READY
TEST AL, 64 ;SEE IF DATA OVERRUN FLAG SET
JNE ERRMESS ;IF SO, NOTIFY BASIC PROGRAM AND EXIT
MOV DX , ADD5 ;YES, DONE, SO GET LOW BYTE OF DATUM
IN AL, DX
MOV [DI],AL ;AND STORE IT
INC DI ;GO TO NEXT LOCATION IN ARRAY (1 BYTE LATER)
NOV DX, ADD6 ;jGET HIGH BYTE AND STORE IT
IN AL, DX
MOV [DI],AL
INC DI
CMP PLOT, 0 ;DON'T PLOT IF PLOT FLAG=0
Jz NOPLOT
;PLOT ROUTINE STARTS HERE
MOV TEMP, CX 1SAVE CX FIRST
MOV AH,AL ;GET HIGH BYTE JUST TAKEN
MOV AL, [DI-2] ;jAND LOW BYTE FROM STORAGE SO AX=DATUM
ADD AX, 2047 ;CALCULATE Y-VALUE TO PLOT =
CWD : 199- ( (DATUM+2047)/21)
MOV BX, 21 ;DIVIDE BY 21--QUOTIENT IN AX
DIV BX
MOV DX, AX sRESULT INTO DX
NEG DX ;NEGATE AND ADD TO 199
ADD DX,199
MOV SI,TEMESI ;GET X-VALUE OF LAST POINT ON SCREEN
INC SI ;GO TO NEXT LOCATION ON SCREEN
CMP 51,640 ;TEST IF AT RIGHT EDGE OF 640 X 200
JL M1 i SCREEN
MOV sI1,0 ;IF SO, GO TO LEFT EDGE TO PLOT
M1: MOV CX,SI1 ;GET X-VALUE INTO CX
MOV TEMPSI,SI ;SAVE X VALUE
MOV AX,3073 jAH=12,AL=1 TO WRITE DOT TO SCREEN
INT 10H ;PLOT POINT
MOV CX,TEMP ;RESTORE CX
NOPLOT: LOOP  DONE ;DECREMENT CX AND LOOP IF >0
;BRANCH TO HERE UPON FINISH OR OVERRUN
NOGO: MOV DX, ADD4 ;TURN OFF A/D
MOV AL, O g
ouT DX, AL
STI tRESTORE INTERRUPT SERVICE
POP BP ;RESTORE BP
RET 12 16 ARGUMENTS IN CALL X 2=12
ERRMESS: MOV ~ DI,OVRUN _iSET OVERRUN FLAG SINCE A/D GOING
MOV WORD PTR [DI],CX ;TOO FAST
JMP NOGO
TIMER ENDP
RTN_LEN EQU $-TEMP ;LENGTH OF ROUTINE FOR HEADER
CSEG  ENDS

END HEADER ;NEEDED FOR A .BIN FILE CONVERSION

Listing 2: General-purpose data-collection, graphing, and smoothing program in IBM PC
BASIC (DOS 1.10).

10 REM GENERAL PURPOSE DATA COLLECTION PROGRAM

20 REM S. GATES, DEPARTMENT OF CHEMISTRY, ILLINOIS STATE UNIVERSITY, NORMAL, IL
30 REM

40, REM Some FOR...NEXT loops are compressed to speed execution

50 CLEAR,31000: BLOAD "TIMER.BIN",231000: TIMER=31000 'Get timer routine
60 DIM A%(1000),B(1000),5G%(9)

70 WIDTH BO:CLS

B0 INPUT " Do you wish to process data that have already been collected?";Y$
90 IF ¥$="y" OR Y$="Y¥Y" THEN Y=4: GOTO 300

100 INPUT "Enter your name, please"; NAMS

110 D$=DATE$: T$=TIME$: INPUT "Enter the sample identification, please 5%

Listing 2

before the previous data point has
been read from the A/D converter.
This is referred to as an overrun.
Thus the program must check for the
occurrence of an overrun. Upon find-
ing one, the assembly routine sets a
flag that can be read by the BASIC
program once the data collection is
finished.

At very high data-collection rates,
interrupt-driven processes occurring
in the computer, such as interrupts
by the system clock, may interfere
with data collection. Indeed, initially
this program was limited to 6 kHz
until I realized that the interrupts
from the system clock were taking too
much time. For this reason, at rates
above 5 kHz, the subroutine turns off
interrupts with a CLI (clear interrupt
flag) instruction; when data collec-
tion is completed, the interrupts are
again enabled by using an STI (set in-
terrupt flag) instruction.

At low-to-moderate data-collection
rates, it is useful to have a real-time
plot. This is done for each data point
collected by loading the low and high
bytes of the data point into a register
and converting it so that the screen
displays a —10-volt A/D reading at
the bottom and a +10-volt reading at
the top—i.e., so that the full screen
is used for the display.

When this assembly-language rou-
tine is linked to a higher level pro-
gram, such as a compiled BASIC or
FORTRAN program, only minor
changes are required. The Header
section must be removed, so that the
code starts at Temp. The Timer pro-
cedure must be made Public, and the
last line of the routine must include
an End statement instead of an End-
Header statement. After assembly,
the subroutine is linked to the call-
ing program using Link in the nor-
mal fashion; EXE2BIN does not need
to be run in that case.

Sample BASIC Program

A short interpreter BASIC program
for the IBM PC that uses the assem-
bly-language routine is shown in
listing 2. The program sets aside a
region of memory for the routine; the
location chosen in line 30 may vary
depending upon the amount of
memory available in the system. The



value 31500 is correct for a 64K-byte
system using Advanced BASIC.
After the data has been collected,
the overrun flag is checked, and the
data is displayed in the high-resolu-
tion graphics mode. The data is

Listing 2 continued:

scaled to fill the entire screen.
Once the data has been collected
and displayed, you usually will need
to remove high-frequency noise. A
simple method for doing this in soft-
ware is shown in listing 2. It uses a

il

120 PRINT "Please enter 3 lines of experimental description, including”

PRINT "Sample preparation, instrument
130 FOR I=1 TO 3: LINE INPUT LS$S(I): NEXT I
140 INPUT "Enter the channel number (0 to
150 INPUT "Enter the number of data points

settings, etc."

15)"; C%
to collect.";N%

160 IMPUT "Enter the number of data points/second desired. "; S

170 S¥=S: IF S< 1 THEN S%=-1!/S 'Convert
180 PRINT "Type any key to start count-dow
190 IS=INKEYS:IF IS$="" THEN 190

200 CLS: FOR I=10 TO 0 STEP -1: LOCATE 12,

NEXT I 'Count d
210 F%=0 'Initial
220 P%=1:IF S% > 2000 THEN P%=0 '‘Plot if
230 CALL TIMER(A%(1l) ,F%,P%,N%,C%,S%) e

to proper format for timer routine
n for data collection.

40 : PRINT I: FOR J=1 TO 500:NEXT J:
own; J loop is delay between counts
ize overrun flag
< 2000 pts/sec

240 IF F%<> 0 THEN PRINT "Warning--data taken too fast": N%=N%-F%

250 FOR I=1 TO N%

260 IF A%(I) > 32767 THEN A%(I)=A%(I)-

270 A% (I)=A%3(I)/.2047: 'Store inpu

280 NEXT I

290 CLS: PRINT " Enter a 1 to plot data on
PRINT " A 2 to store the data in a fil
PRINT' " A 4 to get another file":PRINT

300 ON Y GOSuUB 340,510,670,770,890

310 GOTO 290

320 Thdkdkdkdki® SUBROUTINES khkkhkkkhkikk

330 REM Screen plotting routine

340 SCREEN 2 :KEY OFF

ollect data; all variables MUST be
INTEGER!

655351

t as mV, assuming -10 to 10V range

the screen”
e.": PRINT " A 3 to smooth the data":
" A5 to exit": INPUT Y

350 DEF FNSCALE(2%)=190-190* (Z%-YMIN)/(YMAX-YMIN)
360 INPUT "Enter the label for the graph",LABS

370 CLS:YMAX=A%(1l): YMIN=A%(1)
380 FOR I=1 TO N%

390 IF A% (I)<YMIN THEN YMIN=A%(I) ELSE IF A%(I)> YMAX THEN YMAX=A%(I)
400 NEXT I

410 YPLOT=FNSCALE(A%(1))

420 PSET (60,YPLOT),O0 'Go to first point

430 FOR I=2 TO N%: XPLOT=60+579* (I-1)/(N%-
LIME - (XPLOT,YPLOT): NEXT I

440 LOCATE 25,40 : PRINT LABS;: LOCATE 1
and box plot

450 LOCATE 25,8 : PRINT "1";: LOCATE 25

1) : YPLOT=FNSCALE(A%(I)):

1 : LINE (60,0)-(639,190),,B 'label

75 : PRINT N%;: LOCATE 1,1
PRINT YIMAX;: LOCATE 24,1 : PRINT YMIN;

'Label axes

460 LOCATE 6,1: PRINT "Type any key to continue”

470 VYS=INKEYS:IF YS$="" THEN 470

480 RETURN

490 REM *kkkkkkk

500 REM Subroutine to store data in a file

510 INPUT "Enter the name of the file in which the data are to be stored.";FILN$

520 OPEN FILNS$ FOR OUTPUT AS #2

530 WRITE #2,NAMS,DS$,TS - 'Save
540 WRITE #2, SS 'Save
550 FOR I=1 TO 3: WRITE #2,LS(I): NEXT I

560 WRITE #2,N%,S5% 'number of po

570 FOR I=1 TO N%: WRITE #2,A%(I): NEXT I
580 CLOSE #2: RETURN

590 REM **k%xkkkxk

600 REM Subroutine to compute second-order
610 REM including smooths at both begin
620 REM It computes a "smoothed" value for
630 REM the 4 points on either side o
640 REM times the corresponding coeff
650 REM It then computes the "smoothed" va

name, date, time

sample description
' and conditions

ints, sampling rate

9-point Savitzky-Golay .smooth
ning and end of data

each point by adding together

f it, plus itself, each multiplied
icient.

lue for each successive point

660 REM using the original data array.

670 DATA -21,14,39,54,59,54,39,14,-21: 'Sa
680 RESTORE

690 FOR I=1 TO 9:READ SG%(I) :NEXT I 'Ge
700 FOR I=1 TO N%: B(I)=0:DF%=0: FOR J=-4

710 B(I)=B(I)+A%(I+J)*SG%(J+5):DF%=DF%
720 MEXT J:B(I)=B(I)/DF%:NEXT I 'Di
730 FOR I=1 TO N%: A%(I)=B(I): NEXT I 'St
740 RETURN

750 REM *kkkkhtkhkkk

760 REM Subroutine to read previously coll

vitzky-Golay coefficients

t coefficients

TO +4: IF I+J< 1 OR I+J>N% THEN 720
+5G% (J+5)

vide by sum of coefficients used
ore back in original array

ected data from disk file

770 INPUT "Enter the name of the file to be processed. " ; FILNS

780 OPEN FILNS FOR INPUT AS #2
790 INPUT #2, NAMS,DS$, TS
800 INPUT #2,5$

810 FOR I=1 TO 3: LINE INPUT #2,LS$(I): NEXT I

820 INPUT #2,N%,S%

830 PRINT NAMS,DS,TS: PRINT S$: FOR I=1 TO 3: PRINT L$(I): NEXT I

840 PRINT "HNumber of points= "; N%, "Point
850 FOR I=1 TO N%: INPUT #2,A%(I): NEXT I

s/sec= "; S

860 CLOSE #2: PRINT "Type any key to continue"

870 YS=INKEYS$S: IF Y$="" THEN 870
880 RETURN
890 END
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Figure 2: The effect of filtering on noise levels can be very significant. Figure 2a shows 200 data points taken from an instrument over a
period of 20 seconds. Ideally, the signal should be a straight line, but instead shows both long-term and short-term noise. In figure 2b, data
from the same instrument is passed through a digital (software) filter once; in figure 2c, it is passed through the filter twice. In figure 2d,
data from the same detector is passed through a hardware low-pass filter.

“Savitzky-Golay” type smoothing al-
gorithm (see reference 3), which is a
rapid, easily implemented smoothing
technique that is equivalent to fitting
a least-squares line through the data.
The order of the fit and the number
of points included in the fit can be
modified to provide varying amounts
of smoothing. A second-order, 9-
point smooth is the one most often
used in my lab. In picking which soft-
ware filter to use, you may find an ar-
ticle by Cram et al. quite useful (see
reference 1). For severe noise prob-
lems, other techniques such as en-
semble averaging or filtering using
fast Fourier transforms may prove
useful.

The usefulness of the filtering pro-
cess is illustrated in figure 2. Figure
2a shows data collected from the
detector of a high-performance liquid
chromatograph, without filtering. In
figure 2d, data was collected from the
same detector, but with the low-pass

hardware filter being used. In figure
2b, the data is exactly the same as the
unfiltered data (figure 2a), except that
it has been passed through the
Savitzky-Golay second-order, 9-point
filter contained in listing 2. In figure
2¢, the data from figure 2a has been
passed through the Savitzky-Golay
filter twice; the reduction in the noise
is striking. I often use a combination
of hardware and software filtering for
optimum results.

Examples of Use

I offer a four-week course to science
students that teaches them to inter-
face to a variety of scientific instru-
ments using the techniques de-
scribed in this article. Students spend
one week learning BASIC, two weeks
learning the concepts of interfacing

and writing simple programs, and -

one week interfacing the computer to
a specific chemical laboratory instru-
ment.

Although the students learn to
write data-collection and display rou-
tines in BASIC, for their final project
they use the Timer routine in listing
1. Using the standardized interfacing
system, in one week’s time they have
written complete data-collection and
analysis programs for a number of
different instruments, including a pH
meter, a UV (ultraviolet)-visible spec-
trophotometer, a differential scan-
ning calorimeter, a high-performance
liquid chromatograph (HPLC), and a
polarograph. Even though these pro-
grams were written in one week’s
time, each of these programs is now
in routine use in our teaching or
research laboratories.

I'll use two examples to show how
quickly and easily instruments can be
interfaced using this approach.

One student interfaced an IBM PC
to a-polarograph, using the circuitry
shown in figure 1. The polarograph
already has a sophisticated preampli-



The Tecmar board can be given instruc-
tions, and have information read from it,
in one of two ways: either the I/O (input/
output) mode or the memory-mapped mode
can be used. In the I/O mode, various func-
tions of the board are accessed through
ports, which are addressed with INP and
OUT instructions in BASIC, or IN and
OUT instructions in assembly language.
In the memory-mapped mode, the func-
tions are accessed at a series of consecutive
memory locations; this requires PEEK and
POKE instructions in BASIC, or any
memory-addressing instruction in assem-
bly language, such as MOV or TEST.

The choice between these two modes is
largely a matter of personal preference. The
memory-mapped mode is slightly faster but
the board is configured at the factory for
the I/O mode, which is probably the
simpler mode to program. In either mode,
you must select the base address, which is
the first of 16 consecutive addresses used
to communicate with the various functions
on the board. The base I/O address set at
the factory is 1808. However, other base ad-
dresses, as well as the memory-mapped
mode, may be selected using the appropri-
ate jumpers or switches.

Other options available on the board in-
clude auto-incrementing of the A/D
(analog-to-digital) converter (automatically
switching the channel from which data is
being taken), and the range of the signals
coming from or going to the instrument.
In addition, three types of inputs to the
A/D converter are selectable by appropriate
Jumper settings: single-ended, pseudo-
differential, and true differential. The
single-ended setting is normally used, but
the differential modes are particularly use-
ful with low-level signals in environments
with large amounts of electromagnetic
noise. It is also possible to use interrupts
to signal the computer when the A/D
board has data ready for storage.

The system described in the text uses a

Using the Tecmar A/D Board

—10-V to +10-V bipolar range for the A/D
board, clock triggering of the A/D board,
and a single-ended input. Only one instru-
ment is normally connected, so the auto-in-
crementing feature is disabled, as are in-
terrupts. Timer 5 is used to trigger the A/D
board.

The clock portion of the Tecrnar board
provides a general-purpose mechanism for
timing various events or for providing
timed pulses for triggering various events.
At least 18 different modes of operation are
possible, each with several options. To the
average user, this number of possibilities
can prove highly confusing at best.

For triggering the A/D board at specific
intervals, however, the process is fairly
straightforward. The clock circuitry con-
tains a 1-MHz clock, which is further sub-
divided either by powers of 10 (BCD scal-
ing) or by powers of 16 (binary scaling),
depending upon the option selected. Any
one of five counters can be loaded with a
count, which is then either incremented
or decremented every time the clock “ticks.”

For example, with a BCD scaling of
divide-by-100, the clock provides a 10-kHz
output. Assuming the count is in a
downward direction, then the 16-bit
counter can be loaded with a value of 99
to provide an output pulse to the A/D
board every 0.01 second (i.e., 10 kHz -+ 100
= 100 Hz). Note that the counter provides
an output to the A/D board when it at-
tempts to go below zero (called the “ter-
minal count”); hence, the counter is set to
99 rather than to 100.

To connect the counter pulses to the A/D
converter, the output from the specific
counter must be directed to the trigger in-
put of the A/D converter. Because of the
pin placement on the Tecmar board, the
easiest method for doing this is to connect
the output of counter 5 to the A/D con-
verter by jumpering pins 3 and 4 of con-
nector J2.

All of the functions of the clock are con-

. which counter-mode register is to be used;

trolled using two 1/O ports accessible to
any program. Although these ports are
termed control port and data port, both
ports are needed to set up the correct tim-
ing sequence. In a typical use of the timer,
the control port is first directed to point to
an internal register called the master mode
register. You then select the various con-
trol options by loading a 16-bit word into
the master-mode register via the data port;
this selects options such as whether an 8-
or 16-bit I/O bus is being used, what is to
be used as a source of the clock frequency,
and so forth.

Most of the information, however, is
loaded into another internal register, the
“counter-mode register.” There is one such
register for each of the five counters. Hence,
the program uses the control port to select

in this case, the one for register 5 is
selected. The counter-mode register is then
loaded, through the data port, with the
various options selected for that register.
Options include whether to count up or
down, whether to count in binary or BCD,
and which subfrequency of the clock is to
be used. Special options are available if the
counters are to be used as a time-of-day
clock.

When the program is ready to begin col-
lecting data, the appropriate counter must
be loaded with the correct count and
“armed,” i.e., started counting. Assuming
that the A/D converter has been set to
recognize the signal from the clock as a trig-
ger by enabling the external start bit, the
A/D converter will automatically initiate
a conversion (data collection) every time
the counter register goes to zero. Hence, the
program only needs to wait until the A/D
converter signals that it has completed a
conversion and then store the data; no tim-
ing loops need to be written. The A/D con-
verter will continue to be triggered by the
clock until the clock output is turned off
by the program.

fier system, so a 10-volt signal could
be readily obtained. Hence, the stu-
dent set the preamplifier on the in-
terface cart to a gain of 1, attached it
to the recorder output of the polaro-
graph, used no filtering, and set the
Timer routine to collect data for a
period of time determined by the
potential range scanned.

The major task of the student,
then, was to understand the theoret-

ical basis of the instrument readings
and to design a program in BASIC to
analyze the data. In order to ac-
complish this, the student had to fit
a least-squares line to a sawtooth
wave function, determine the inflec-
tion point in the curve, and calculate
the distance between the two least-
squares lines at the inflection point.
The A/D readings were then con-
verted to current values in micro-

amperes and the time scale was con-
verted into the applied potential in
millivolts.

Students in the analytical chemis-
try class now use data collected with
this system from a series of standard
lead samples to calculate the amount
of lead in leaded gasoline. Photo 2
shows data collected by a group of
students for a standard sample of
lead.
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Photo 2: Students taking our analytical chemistry laboratory course
analyze the amount of lead in gasoline using the interface described
in the text. The diffusion current (ID on the display) is proportional
to the concentration of the lead in the sample.

A second example of an instrument
that students have interfaced is a
high-performance liquid chromato-
graph. The normal output of the
HPLC is a 10-mV signal displayed on
a strip-chart recorder; hence, the pre-
amplifier was set to a gain of 1000 to
provide a 10-volt signal to the A/D
converter.

The student writing the program
divided it into two sections: a data-
collection portion and a data-analysis
portion. In the data-collection por-
tion, all of the parameters of the in-
strument and the sample to be ana-
lyzed are recorded, thus providing a
permanent record of the conditions
of the analysis. The program also
asks for the names of the substances
being analyzed, if known, and
whether an internal standard is be-
ing used.

The data collection is done using
the assembly-language routine, with
a real-time plot of the data. If more
than a predefined number of points
are collected, the data is “bunched,”
or averaged, together. The Savitzky-
Golay smooth is then performed,
and the smoothed data and identify-
ing information are stored in a disk
file.

In the second section of the pro-
gram, the peaks in the data are in-

Jetector response
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Figure 3: A common problem in chemical laboratory work is to
measure the areas of peaks. Each peak in this figure is integrated by

the computer program; the peaks of interest are peaks 1 and 2, which
are caffeine and benzyl alcohol, respectively. The benzyl alcohol peak

serves as an internal standard for measuring the caffeine. The straight
lines under each peak are the baselines determined by the computer
during the integration process. The large initial peak is a group of

unidentified substances. The sample is a cup of instant coffee.

tegrated, and the area of each peak
is compared to that of an internal
standard. Proper integration involves
deciding where each peak starts and
stops and then selecting the appro-
priate baseline to be subtracted from
each peak. The results of this process
are shown in figure 3. Again, the pro-
gram is used routinely in our analyt-
ical laboratory course; figure 3 shows
an analysis of caffeine in coffee per-
formed by a group of students in that
course.

Conclusions

One of the many advantages of the
revolution in “home” computers is
that powerful but inexpensive com-
puters can be used in scientific or in-
dustrial laboratories, even by those
with relatively limited computer
skills. Utilizing off-the-shelf com-
ponents and simple programming
languages, extremely sophisticated
data-collection and data-processing
systems can be developed very
rapidly.

The system described here repre-
sents a hardware and software solu-
tion to the problem of data collection
and analysis in a wide variety of com-
monly encountered laboratory situa-
tions. By making only minor modifi-
cations, you should be able to adapt

’

it to other types of hardware and to
other types of instrumentation with
an extremely wide range of applica-
tions, not only in chemistry, but in
other scientific and industrial areas as
well.m
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